An Integrated Approach to build Programming
Competencies through Spoken Tutorial Workshops

aKiran L. N. Eranki, PKannan M. Moudgalya
IDP Educational Technology,
IIT Bombay, Powai, Mumbai 400 076, India.
email: erankikiran @iitb.ac.in, *kannan@iitb.ac.in

Abstract—This work investigate the implications of using visu-
alization tools along with spoken tutorials to build comprehension
and debugging skills of novice programmers. And also, evaluates
the self-learning approach to teach programming skills to the
students. Qualitative and Quantitative studies were conducted
using spoken tutorial workshops on Java and C++ courses.
Results of the study have shown improvement in programming
skills and conceptual understanding when subjected to program
visualization along with spoken tutorials.

Keywords—spoken-tutorial, programming, visualization, com-
prehension, debugging

I. INTRODUCTION

Programming competencies mainly include programing
comprehension and debugging skills which are the foundations
of programming skill. These skills are difficult both for novice
programmers to learn and computer science educators to
teach[1]. A study conducted by ITiCSE group to assess the
programming ability of first year engineering students found
that average score was only 20%[2] which also lead to high
dropout rates, of around 30-60% associated with CS courses.
Considering the growing demands of IT workforce for skilled
programmers, programming education has a significant role to
meet these requirements. Inadequate problem-solving abilities
and lack of essential mental models of key programming
concepts lead to misconceptions and difficulties in solving pro-
gramming problems[3]. Researchers and instructors emphasize
the development of conceptual mental models of various key
programming concepts. Most students carry a pre-defined set
of ideas on computing concepts such as object assignment,
where students think assigning a value to variable A and
transfer the value of variable A to variable B makes variable
A lose its actual value. And several such misconceptions
also exist in object reference concepts as well. Constructivist
theory argues that traditional teaching approaches are passive
and do not provide adequate opportunities for students to
recognize the errors and resolve the misconceptions of the
concept[1]. Visualization techniques provide opportunities to
address misconceptions on object assignment and reference
concepts discussed earlier. In this pursuit, we examine the
implications of visualization tools used along with spoken
tutorials to examine programming competencies of the learner.
The paper is structured as follows: Section 2 presents the rele-
vance of spoken tutorial workshops in programming education.
Section 3 describes the research methodology used to conduct

the study, followed by the results and conclusions of the study
are presented.

II. SPOKEN TUTORIAL WORKSHOPS

In this section, we will give a brief overview of various free
open source software(FOSS)courses conducted through Spo-
ken tutorial based Education and Learning on FOSS(SELF)
workshops[4]. We also flag various programming difficulties
expressed by students while learning these courses through
workshops.

A. Self-Learning Tutorials

A spoken tutorial is a screencast with a running commen-
tary of an expert demonstrating how to write a program or
execution method. Novice learners can easily replicate the
tutorial exercises and be able to program. A ten minute spoken
tutorial can include more than one hundred screen transitions.
As a result, these video tutorials qualify as comprehensive
instructional material, compared to other methods[4]. These
tutorials provide a self-learning approach to learn a new
concept by practicing while watching a tutorial. Hence, these
workshops can be conducted by non-expert organizers as well.
About 3,000 workshops have been conducted so far since
June 2011. At present, about 300 workshops are conducted
every month. These workshops are at present conducted on
the following FOSS systems: Linux, Python, Scilab, ETEX,
C/C++, Java, LibreOffice and PHP-MySQL.

B. Programming difficulties due to Self-Learning Approach

SELF workshops conducted to train students on program-
ming were assessed at recall, understand and apply levels of
blooms taxonomy. During this study, the participants were
provided with a collection of short C program codes, such
as generate Fibonacci series of numbers. These programs
were at four distinct levels of complexity: 1) Basic while-
loop construct. 2) Iterative looping. 3) Recursive procedures.
4) Embedded recursion procedures were used. Students were
asked to fill the missing code. Most of them solved first two
levels of non-recursive complexity. but had difficulty solving
the last two levels due to recursive procedures. As program-
ming concepts are taught using self-learning mode, students
had a difficulty in understanding programming concepts above
apply level such as recursion, inheritance. Students expressed
concerns to solve the programming tasks[5]. Some participants

tried to understand individual lines of code, and ignored
the context built by all lines of code that was previously
executed. And some participants used their prior knowledge
or experience to understand programming concepts. In the
remaining sections of the paper we discuss how we addressed
the programming difficulties of the students and improved their
programming competency through these workshops.

III. RESEARCH QUESTIONS

This study investigates the effectiveness of visualization
tools in improving programming competency. Students have
programming difficulties while studying through self-learning
workshops. So visualization tools were added along with
spoken tutorials to address these difficulties. These tools visu-
alize the program execution in a step-by-step manner through
animation allowing the learner to practice and improve their
programming skill. The research questions examined in this
study are:

1) Does program visualization contribute to programming
competency?

2) Does visualization help learner build a reasonable mental
model of the program?

Sample and Process

The sample comprises 160 students from non-computing
discipline of a local engineering college. A randomized assign-
ment of sample was done based on their order of registration
and discipline of study. All of them had a basic computer
literacy. The students were distributed into two groups[A,B]
of 40 students each for Java and two groups of 40 students each
for C++ course conducted through Spoken tutorial workshops.
These workshops are of two hour duration with pre and post
workshop assessments and individual assignments for each
tutorial. Five concepts were selected for both Java and C/C++
tutorials for this study. The tutorials covered programming
concepts such as variable assignments, recursions, polymor-
phism, pointers and inheritance topics. All students watched
spoken tutorials in both the workshops. The experimental
Group(A) students solved object assignment and reference ex-
ercises using visualization tool along with tutorials. They also
received concept-wise diagnostic feedback while solving the
exercises using the tool. Whereas, control Group(B) students
solved the same exercises without using visualization tool and
No diagnostic feedback was provided. After the workshop,
both the groups attended post-test and submitted workshop
feedback questionnaires.

IV. ROLE OF VISUALIZATION IN PROGRAMMING
COMPETENCY

Visualization Tool

The current study investigates the effectiveness of program
visualization in improving programming skills. Visual Pro-
gramming allows the user to specify a program using graphics
and animated tool options, unlike conventional programming
that consist of a text-based editor with no graphical outputs[6].
Visualization tools help novice learners understand logical

flow of data within the program. Codeasy, open-source java
application built on jeliot 3.1[7] engine was used in the work-
shop. This tool consists of four sections namely- Methods,
constants, expression instance/array sections which help the
learner to visualize the data flow transitions. Snapshot of pop-
up quiz feature in visualization tool is shown in Fig. 1. We
considered jeliot engine for teaching java, as it supports both
animation and object-oriented programming. We customized it
to suit our workshops by adding features such as pop-up quiz
questions and dynamic addition of compiler headers to coding
section. Diagnostic feedbacks are provided at each and every
step of the program execution while assessing their programing
concepts.

;
i
=]

g
653
B
[|
-
C e
()
E R

H
ER
=1
&
mE

:
=
¥H
= H

-
@ pa— 5

KKKKKKK
() [
5
Mcopersyn- o
Fig. 1. Codeeasy: Pop-up Quiz feature snapshot

Programming Competency Questionnaire

We examined the programming skill of the learner through
programming competency questionnaire. This questionnaire
had both close and open ended questions which require a
descriptive explanation of program code provided. Partici-
pants programming concepts were assessed based on data
representation and verbal data gathered through interviews
that describe their thoughts of program execution. Students
were asked to solve the object assignment and reference
exercises, which evaluate manipulation of object assignment
and references using a method.

Analysis of Competency Questionnaire

The effect of visualization tool on programming competency
has been analyzed using the Analysis of Variance (ANOVA).
The effect of visualization tool was statistically significant
(F(3,80)=4.68, p<0.05) on improving programming concepts.
These results also explain novice programmers transition from
misconceptions to reasonable understanding of the concepts.
However, no significant gender difference was noticed on
programming competency among the groups. Group(A) stu-
dents showed significant improvement in comprehension and
debugging skills (Java:68%,27 and C++:83%,33) as shown
in Table I. While no significant improvement was noticed in
Group(B) for both the courses. The participants in both the
groups showed keen interest in visualization tools but only
Group(A) was provided with visualization. The effect of prior

experience in programming also showed effect(F(3,80)=8.46,
p>0.001) on improved performance in 3 participants of
Group(B), who attended a programming course either in
school or summer camps. Considering the novices conceptual
understanding needs to be build through formal training or
teaching aid to learn new concepts. So visualization tools were
very useful to them as observed. And this also confirms the
effect of visualization on improving programming skills.

TABLE I
IMPLICATIONS OF VISUALIZATION ON PROGRAMMING COMPETENCY

Number of Students in each Group

Course | Group | Compreh Debug No-Improvmnt | N
Improvmnt | Improvmnt

Java A 12 15 13 40

v B 5 9 27 40

A 20 13 7 40

ClC+ —5 2 9 19 40

V. ROLE OF VISUALIZATION IN MENTAL MODEL

In this section, We present the effects of visualization in
improving the student mental model of the program and its
evaluation through mental model questionnaire.

Mental Model

We define the student understanding on programming con-
cepts as student mental models. Compared to mental models
of physical devices, mental models on programming concepts
are more difficult[8]. While physical devices are visible and
tangible, it is relatively easy for users to create a mental model
of how the devices operate. On the other hand, programming
concepts are invisible and difficult to image[6]. Students
cannot see what is happening in the computer when a program
is executed[1]. As a result, students hold several misconcep-
tions on program execution[3]. Program visualization provides
a potential solution to address this problem. We examined
the misconceptions held by the learner using mental model
questionnaire.

Mental Model Questionnaire

Earlier studies on programming competency using spoken
tutorials have shown 50-65% performance on comprehen-
sion and debugging tasks[5]. All students attempted mental
model questionnaire followed by pre-workshop test before
participating in the workshop. This questionnaire has been
validated by several researchers earlier[8] in CS education re-
search. This questionnaire mainly has two types of questions-
Al.assignment and R1.references. Snapshot of Mental Model
Assignment Questionnaire has been shown in Fig. 2. After
two hour workshop, students were asked to fill the question-
naire once again. While workshops without visualization tools
lacked this opportunity. As a result, student had a difficulty
to comprehend higher levels of programming competency
through assignment and reference exercises. The performance
of Group(A) students in post-test also showed significant
improvement both in Java(SD=86.35, 40) and C++(SD=76.84,
40) workshops as shown in Table II.

AlAssi gnment Type Questions

1. Read the following program code and tick | The new values of a and b are:
the correct answer in the next column. . 20b =10

Use this column for your rough notes. Please
don't scribble on any other part of the paper:

int a = 10;
int b = 20;
a =D

e e

S
TR T
-4
PO W o

Ennpmpnnpnmw

g
3
g
»
B
a
=

Any

Blooo
e [0

2. Read the following statements and tick the | The
correct answer in the next column.

int a = 10;
int b = 20;
b = a;

Jru‘»&wl:»—-s W
=

R
H

[]
N O W W S

g

=

S

CE

]

ooy
Booowow o

&

.3

3. Read the following statements and tick the | The

f k and n are:
correct answer in the next column. 0 n

20n =20

int k = 10;
int n = 20;

w.mws e e
=

i EACEE]
H
[3
e

Fig. 2. Snapshot of Mental Model Assignment Questionnaire

TABLE II
VISUAL(VT+ST) vS NOVISUAL SPOKEN TUTORIAL WORKSHOPS

FOSS Group PreTest | PostTest | Mean SD | N
C/Cat A(VT+ST) | 62.15 186.25 | 122.10 | 86.35 | 40
B(ST) 64.35 141.25 | 78.90 | 55.50 | 40

Java A(VT+ST) | 62.33 172.55 | 109.22 | 76.84 | 40
B(ST) 63.25 124.55 | 64.30 | 45.50 | 40

Analysis of Mental Model Questionnaire

Depending on the performance of the learner on mental
model questionnaire and post-test the effectiveness of the
visualization is being analyzed as shown in Table II. We
found that most of the students from Group(A) showed better
understanding of programming concepts and performed signif-
icantly better (N=40, 82%) on assignment,reference exercises
and post-test programming tasks than those of Group(B)
students. Few students from Group(B) performed well on
more advanced concepts of reference assignment without
any practice or exposure to visualization tool. This could
have been due to prior experience of the learner with the
language. We have found Group(A) participants performance
better then Group(B) both for Java and C/C++ courses. The
test questionnaires cover three close-ended questions and one
open-ended question. The close-ended questions tested the
participants on execution result of a program with multiple
reference assignments(topic: Inheritance). A sample open-
ended questions has been shown below.

\\open-ended question\\

A Student class defined with ’'name’ as

string object. Constructor ’'new Student ("ajay")’
is used to create an object of Student class.
"changeName ("kartik")’ method is used to change
the name to "kartik".

Describe what happens when following statements
are executed. You may use both text and diagrams
in your answer.

Student aj;

Student b;

a = new Student (ajay);

b = new Student (pavan);

a = b;

b.changeName (kartik) ;

a.name = ; b.name = ;

Concept-wise performance among the groups also showed
higher Group(A) performance in inheritance(N=40, 84%),
polymorphism(N=40,80%) and Arrays (N=40, 83%) as com-
pared to Group(B) for the same concepts(N=40, 67%; N=40,
60%; N=40, 68%) as shown in Fig. 3.

Concept-wise Performance of Students

cict+

B Arrays(%)

M Pointers/Methods (%)
Constructors(%)

= Inheritance(%)

W Polymorphism(%)

Java

0 10 20 30 40 50 60 70 80O 90 100

Fig. 3. Concept-wise performance of students

Workshop Feedback Questionnaire

Workshop Feedback questionnaire was also administered at
the end of the workshop. Feedback scores also showed an
acceptable usability score of p=74.1% for non-visualization
groups and p=86.6% for the visualization group. Based on the
usability study and learner feedbacks, we have found both
the methods of teaching programming courses seem to be
acceptable to the users of spoken tutorials. As mentioned
earlier, workshops with visualization tools had interactive
feedbacks and graphical representation of program execution.
As a result, student misconceptions generated during self-
learning workshops have an opportunity to correct and im-
prove their programming skills.

VI. CONCLUSIONS

The study presented in this paper addressed the student pro-
gramming difficulties caused due to self-learning workshops
on Java, C++ concepts. And also showed the application of vi-
sualization tools to improve programming competencies. This
has also contributed to evaluation of programming courses and

learners feedbacks for improving workshops. We hope this
study will contribute to better understanding of the needs of
programming education. However, the results also show that
some students did not show any change in their understanding
on reference type questions after using the proposed materials
while most of them showed a change. A possible reason would
be, some students with limited comprehend skills might need
more time to build programming concepts. Despite having
experienced program visualization, their current understanding
is not sufficient enough to solve the tasks. Extensive learning

and practice in programming might help them improve their
skills to solve the tasks and construct a viable understanding of
programming concepts. This study also needs to be extended
further to other programming languages and visualization
tools to generalize our claim on development of conceptual
understanding and programming competency through program
visualization.

ACKNOWLEDGEMENT

This work was partly funded by the National Mission on
Education through ICT, MHRD, Government of India, through
the Talk to a Teacher project. We thank the project-staff
members of spoken tutorial project and the participants of this
study for their time and efforts.

REFERENCES

[1] M.. Ben-Ari. Constructivism in computer science education. 20(1):45-73,
2001.

[2] Almstrum V. McCracken, M. A multi-national, multi-institutional study
of assessment of programming skills of first-year cs students. 33(3):125—
140, 23-25 April 2001.

[3] P. Bayman and R. E. Mayer. A diagnosis of beginning programmers’
misconceptions of basic programming statements. Communications ACM,
26(9):677-679, 1983.

[4] K. M. Moudgalya. Spoken Tutorial: A Collaborative and Scalable
Education Technology. CSI Communications, 35(6):10-12, September
2011. Available at http: //spoken-tutorial.org/CSI.pdf.

[5] K. L. N. Eranki and K. M. Moudgalya. A collaborative approach to scaf-
fold programming efficacy through spoken tutorials. In Intl.Conference
on CollaborateCom 2012, Pittsburgh, PA, USA, 23-26 October, 2012.
IEEE.

[6] B.A. Myers. Taxonomies of visual programming and program visualiza-
tion. Journal of Visual Languages and Computing, 1(4):97-123, 1999.

[7] Gomes A Marcelino, M. Using a computer-based interactive system
for the development of basic algorithmic and programming skills. In
International Conference on Computer Systems and Technologies (Comp-
SysTech2004), CompSysTechT 2013, Rosse,Bulgaria, 17-18 June, 2004.
IEEE.

[8] Bornat R. Adams R Dehnadi, S. Meta-analysis of the effect of consistency
on sucess in early learning of programming. In 217st Annual Psychology of
Programming Interest Group Conference, Limerick,Ireland, 2009. IEEE.

