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a b s t r a c t 

Advanced analysis of road traffic data is an essential component of today’s intelligent 

transportation systems. This paper presents a video-based vehicle speed measurement sys- 

tem based on a proposed mathematical model using a movement pattern vector as an 

input variable. The system uses the intrusion line technique to measure the movement 

pattern vector with low computational complexity. Further, the mathematical model intro- 

duced to generate the pdf (probability density function) of a vehicle’s speed that improves 

the speed estimate. As a result, the presented model provides a reliable framework with 

which to optically measure the speeds of passing vehicles with high accuracy. As a proof 

of concept, the proposed method was tested on a busy highway under realistic circum- 

stances. The results were validated by a GPS (Global Positioning System)-equipped car and 

the traffic regulations at the measurement site. The experimental results are promising, 

with an average error of 1.77 % in challenging scenarios. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 
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1. Introduction 

Vehicle speed measurement is one of the key components of traffic surveillance systems. The provided data can be used

for traffic management and law enforcement. Speed measurement systems can be divided into two main categories based

on their methodology being either active or passive. An active system measures how transmitted signals are affected by a

passing vehicle in order to estimate the vehicles speed, e.g., a sensor system based on an induction-coil loop, a radar or a

laser. However, some of these systems are expensive and require extensive calibration or maintenance [1] . Passive and active

sensors often complement each other well, and, in this study, we concentrate on passive optical video systems. Video-based

systems have become more popular due to the technological advancements in cameras and computer devices, which have

become more efficient, available and reliable [2,3] . In addition, the reasonable cost-effectiveness of these systems makes

them highly competitive with conventional methods [4,5] . 

Video-based speed measurement systems analyse consecutive video frames in order to track a vehicle and thereby mea-

sure its speed. Various image processing and pattern recognition approaches have been employed to realise this task [6] .

The main assumptions are that the speed of the vehicle during detection is constant and that the camera is facing down
� This paper is for regular issues of CAEE. Reviews processed and recommended for publication to the Editor-in-Chief by Area Editor Dr. E. Cabal-Yepez. 
∗ Corresponding author. 

E-mail addresses: saleh.javadi@bth.se (S. Javadi), mattias.dahl@bth.se (M. Dahl), mats.pettersson@bth.se (M.I. Pettersson). 

https://doi.org/10.1016/j.compeleceng.2019.04.001 

0045-7906/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.compeleceng.2019.04.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compeleceng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compeleceng.2019.04.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:saleh.javadi@bth.se
mailto:mattias.dahl@bth.se
mailto:mats.pettersson@bth.se
https://doi.org/10.1016/j.compeleceng.2019.04.001
http://creativecommons.org/licenses/by-nc-nd/4.0/


S. Javadi, M. Dahl and M.I. Pettersson / Computers and Electrical Engineering 76 (2019) 238–248 239 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

towards the scene. A commonly employed technique is foreground/background segmentation, which extracts the moving

vehicle as a blob in order to estimate its speed in consecutive frames [4,7–12] . The segmentation is mainly pixel-based, em-

ploying Gaussian [13,14] , GMM (Gaussian Mixture Model) and kernel densities or a region-based method,such as Statistical

SCSM (Circular Shift Moments), which considers spatial dependencies to determine the foreground in the video frame. The

direct blob analysing methods using the blobs area or displacement are sensitive to shadow and sudden illumination and

require a sparse area for segmentation in several consecutive frames [6] . 

Many speed measurement methods have been proposed to track the features of a moving vehicle directly such as edges

and corners [1,9,15,16] . The main challenges here are to find and track discriminative features representing the vehicle and

to achieve more accurate results by detecting the features on the same road plane. Then the displacement in pixels is turned

into the correct real- world geometric displacement in order to calculate the speed. Optical flow algorithms have been used

in many applications for motion estimation of a subset of points in a scene. The LK (Lucas–Kanade) algorithm, Horn–Schunck

algorithm and Farnebäck polynomial expansion algorithm are among the most common algorithms employed to yield the

optical flow [17] . Feature-based methods are more robust and effective when it comes to shadows, i.e., tracking vehicles

in challenging lighting conditions. It should be noted that feature extraction for geometric measurements, as opposed to

recognition, usually requires images with high resolution [18] . 

Furthermore, there are approaches that have been introduced to track objects based on kernels and local functions, such

as density distributions and image patches [19] . Mean-Shift and Camshift (Continuously Adaptive Mean-Shift) algorithms

[20] are among the popular techniques used for tracking objects whose sizes may change in consecutive frames. The pro-

cess of convergence to a local maximum of the distribution under a window containing the moving object continues in each

successive frame in order to track the object in the video [21] . These methods are suitable for tracking vehicles that are rel-

atively far from the camera with high contrast; otherwise, it may be difficult to obtain a geometrically correct displacement

[12] . 

There are also methods which combine several of the above techniques in order to estimate the speed of the vehicle

along a road, e.g., by tracking the license plate region [6,22] . These methods require at least two images containing the

moving vehicle. The license plate region is then detected based on various approaches such as adaptive thresholds, a priori

boundaries for size and shape and so forth. Finally, the speed is estimated based on a motion vector obtained by tracking the

license plate region or its distinctive features in at least two frames. When using a calibrated camera, a projective transfor-

mation (inverse perspective mapping) can be used to achieve more accurate results. These methods require specific camera

placement and images with high resolution in order to be able to detect the license plate region properly. In addition, the

license plates for all vehicles are assumed to be at the same height from the ground [6] . 

It can be seen from the review of related works above that as a result of the perspective distortion, the pixel

displacement in the image varies from the-real word geometric displacement. Consequently, for feature-based track-

ing methods, the inverse perspective mapping should be applied to the plane containing the features (and not nec-

essarily to the ground). Therefore, without a 3D model of the whole system, there could be an inevitable source

of error due to the perspective distortion [4,6] . In addition, any model must consider the temporal sampling of

the camera, the placement of the intrusion lines, the vehicle’s speed and other uncertainties dealing with these

measurements. 

This paper presents a speed estimation method that utilizes the camera frame rate, the placement of the intrusion lines

and a movement pattern vector in order to provide a pdf (probability density function) model of the vehicle’s speed. This

model does not rely on the camera’s parameters, and it requires only a few reference points and their relative positioning

to obtain a precise relation to the real-world geometric displacement. A proof of concept of this method was evaluated on

several hours of video of a major highway recorded by an off-the-shelf handheld camera and a smartphone using different

frame rates under various illuminations and traffic conditions. The ground truth dataset containing the vehicle speeds was

obtained using a GPS (Global Positioning System)-equipped car. Furthermore, the results are discussed and evaluated based

on the traffic circumstances and regulations of the respective highway for different categories of vehicles. 

This work’s main motivation is to propose a vision-based speed measurement system that can cover a large area or a

multi-lane road with minimal installation and maintenance costs in comparison with active sensors, such as radar. As an-

other motivation, the proposed model is able to measure the speed of a vehicle precisely by utilizing only a few parameters

and with low computational complexity. 

The main contributions of this paper are listed below: 

• Addressing the parameters affecting peed measurements in video-based systems analytically, and 

• Developing a comprehensive mathematical model to obtain the probability density function of the vehicles speed in the

video. 

The rest of the paper is organised as follows. The proposed model and the implementation methodology of the speed

measurement system are described in Section 2 . In Section 3 , experimental results are provided and discussed. Finally, the

paper is concluded in Section 4 . 
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Fig. 1. A detection scene containing several intrusion lines ( l m +1 , where m ∈ { 0 , . . . , M − 1 } ) and a passing vehicle observed by a camera facing the road. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Proposed methodology 

In this section, a model is introduced in order to consider the main parameters contributing to uncertainties of a speed

measurement system. The detection system is based on a scenario with several intrusion lines, knowledge of their relative

positioning in the real world and a passing vehicle (see Fig. 1 ). The vehicle’s speed is assumed to be constant when crossing

the lines since the length of the measurement scene is very short (few meters). The proposed model then yields a pdf of

the vehicle’s speed based on a detected movement pattern vector. The implementation of such a system is described later

in this section. Using the intrusion lines as well as storing the incidents in a pattern vector is incredibly effective regarding

both memory and computational complexity. 

2.1. Speed estimation model 

Intrusion detection is a method used to determine when an object crosses a virtual line and enters a region of interest.

For video-based observations, the object’s position is acquired at discrete locations due to the temporal sampling rate. The

sampling interval between the detected discrete locations is equal to the camera’s sampling time. Thus, the intrusion cannot

be detected exactly at the line but instead within a detection distance � (m). The detection distance is related directly to

the camera’s sampling time T (s) and the hypothetical speed of the vehicle v (m/s), 

Δ = T v . (1) 

In other words, the detection distance is directly proportional to the vehicle’s speed and inversely proportional to the

camera’s frame rate. The initial position (starting point) x 1 (m) where the vehicle appears after the first intrusion line is

assumed to be random. In the case of several intrusion lines, for successful detection, the vehicle should fall within the

detection distances associated with each consecutive intrusion line. 

In this paper, a model is proposed for calculating a pdf of a passing vehicle’s speed based on a movement pattern

vector. Hence, M intrusion lines ( M ≥ 2) should be placed on the receiving video frames of a stationary camera such that the

relative distances between them in the real world along the road are known. Accordingly, the intruding vehicle is detected

as soon as it crosses each line at a specific frame index. The main inputs of the model are the movement pattern vector

n = [ n 0 , . . . , n M−1 ] ∈ N and the distance vector of the intrusion lines d = [ d 0 , . . . , d M−1 ] ∈ R 

+ 
0 
, which are defined as, 

n m 

= f m +1 − f 1 , (2) 

d m 

= l m +1 − l 1 , (3) 

where m ∈ { 0 , . . . , M − 1 } , M is the number of intrusion lines, f m +1 is the video frame index number at which detection

occurs, and l m +1 (m) is the position of the intrusion line in the real- world coordinate system (see Fig. 2 ). As mentioned

earlier, given the relative placements of the intrusion lines in the distance vector d and the camera frame rate 1/ T , a vehicle

can appear at any point after the first intrusion line within �. Thus, the starting points distance δ from the first intrusion

line is unknown (random) and not greater than the possible maximum detection distance �, where 0 ≤ δ ≤�. However, the

vehicle’s position x m 

within the following detection distance can be computed knowing the starting point x 1 , the frame rate,

the distance vector of the intrusion lines and the vehicle’s speed. 

At this stage, we introduce two sets of possible positions that demonstrate the places where a vehicle with the hypo-

thetical speed v observed by a camera with the frame rate 1/ T can appear along the path travelled: 
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Fig. 2. (a) The intrusion lines l m , (b) The hypothetical vehicle’s positions x m within the maximum detection distance � for a hypothetical speed v , (c) One 

illustration of vehicle’s positions and the associated n m s for a hypothetical speed v . 

Fig. 3. One example of possible positions based on: (a) the distance vector of the intrusion lines d , (b) the movement pattern vector n , and (c) the overlap 

intervals for (a) and (b) for a hypothetical speed v . 

 

 

 

 

 

 

 

 

 

 

• First, a set of possible positions is computed based on the distance vector of the intrusion lines d . These positions indicate

the detection distances within which a vehicle traveling at a hypothetical speed should appear in order to satisfy the

real-world distance vector of the intrusion lines (see Fig. 3 (a)). 

• Second, a set of possible positions is calculated based on the detected movement pattern vector n . These positions in-

dicate the detection distances within which a vehicle traveling at a hypothetical speed should appear in order to satisfy

the movement pattern vector (see Fig. 3 (b)). 

The necessary (but not sufficient) condition for a valid detection is that the two sets of possible positions above overlap

for all the detection distances for each intrusion line. For example, the method is outlined in a simple scenario with four

intrusion lines in Fig. 3 . The first row shows the set of possible positions in accordance with the distance vector of the

intrusion lines d , followed by the detection distances for a hypothetical speed v . In the second row, the set of possible

positions is provided based on the movement pattern vector n and the same hypothetical speed v . The δ is the same for

both sets since their initial detection conditions are identical. Thus, the first distance overlap of the two sets of possible
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Fig. 4. The common region g of all the distance overlaps based on the scenario in Fig. 3 associated with the probability of the hypothetical speed v . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

positions is a complete �. The remaining distance overlaps are the intersections of the possible position intervals for (a)

and (b) (see Fig. 3 (c)). 

In addition, there should be a common region between all the distance overlaps themselves (see Fig. 4 ) since the set

of possible positions are generated by repetition according to the movement pattern vector, the camera frame rate and the

vehicle’s hypothetical constant speed. In other words, the detection distances at intrusion lines are not, in fact, continuous

but rather discrete positions at which the vehicle can appear after each line provided the movement pattern vector n is

satisfied. Therefore, the distance overlaps are valid if the intervals between them do not violate the movement pattern

vector. 

The common region of all distance overlaps is found via 

g ( v | n , d ) = max 
(
0 , 

m 
min ( d m 

+ (1 − n m 

) T v ) 

−
m 

max (d m 

− n m 

T v ) 
)
, (4) 

where m ∈ { 0 , 1 , . . . , M − 1 } , and g ( v | n , d ) is the common region of the distance overlaps. The pdf is obtained with 

h V (v | n , d ) = 

g(v | n , d ) ∫ v upper 

v lower 
g(v | n , d ) dv 

, (5) 

where v lower and v upper are the lower and upper bounds, respectively, of the hypothetical speeds with g ( v | n , d ) greater than

zero, and h V ( v | n , d ) is the pdf for the stochastic speed V . Accordingly, the expected speed can be determined as 

μV = E[ V ] = 

∫ v upper 

v lower 

v h V (v | n , d ) dv , (6) 

where E [ V ] is the expected speed of the vehicle given the movement pattern vector n and the intrusion lines distance vector

d . 

To sum up, the mathematical model that has been introduced is able to provide the pdf of the vehicles speed based

on the input parameters. The input parameters are the camera sampling time T , the intrusion lines distance vector d and

the movement pattern vector n . The learning phase for the system is based mainly on T and d , which are computed only

once in the beginning. The remaining parameter n is computed upon the passage of each vehicle in real-time; therefore, the

model computes the speed of the vehicle instantly. 

2.2. Implementation of the speed estimation system 

As described earlier, the movement pattern vector n is a set of video frame index differences, i.e., the number of frames

between detections at successive intrusion lines. Therefore, a detection system is required for each intrusion line in order to

determine the vehicles entrance into that specific detection distance. First, the distinctive features of the road corresponding

to the measurement area on the receiving video frames are selected and the corresponding keypoints extracted. Then, the

extracted keypoints are tracked in consecutive frames, so that any motion or displacement in the region is detected. 

2.2.1. Motion detector 

The ideal output of a motion detector algorithm would be some speed or displacement estimation vectors that indicate

the movement of any pixel in a pair of frames [18] . 

In this paper, we use a motion estimation approach based on the polynomial expansion algorithm [17] . The polynomial

expansion algorithm computes an optical flow using an analytical model that approximates the image as a function for

which, at every pixel, a polynomial is locally fitted. Using this method, when the image is considered as a continuous

function, a small displacement of a portion of the image can be determined by equating the coefficients of the polynomial

expansions at the same point. However, other methods can be used as well. 
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This algorithm provides a motion detection component with which to identify the exact frame during which a vehicle

crosses an intrusion line. Thus, the computed displacement is used only to determine the significance of the movement by

using a desired distance threshold to detect the intrusion of the vehicle while ignoring noise and other unwanted sources. 

In the proposed system, the region of interest for detection after each intrusion line is employed for a maximum pos-

sible speed ( v max ) around 40 m/s. Therefore, the system is able to detect any vehicle travelling below that speed, i.e., the

maximum detection distance � (1) is within the region of interest for any hypothetical speed less than 40 m/s. The pdf of

the vehicle’s speed is then determined based on the detected movement pattern vector n . 

2.2.2. Practical considerations 

In this section, some practical considerations are addressed in order to achieve a robust measurement in a noisy envi-

ronment. The first practical consideration is that the detection distances associated with their respective intrusion lines are

not activated all at the same time but only one at a time. Therefore, the system is initially expecting the intrusion to be

detected at the first detection distance based on the direction of the movement. Once motion is estimated at the current

detection distance, then it would be deactivated and the next distance activated. Such a system will ultimately provide more

robust measurements since its vulnerability is limited to only one intrusion line and its detection distance at a time. 

The second practical consideration is avoiding noisy measurements by considering a threshold for motion detection (mo-

tion filter), meaning that if the estimated motion within the detection distance is less than the minimum displacement, then

it would not be considered to be an intrusion since the noise and vibration of the camera (due to wind or heavy vehicles)

can cause small movements in the detection distances. 

Another practical consideration involves improving measurement accuracy and robustness via the waiting time (time

filter). The idea is that after each detection at an intrusion line, there is a waiting time during which the system waits for

the next intrusion at the next intrusion line. If, within this waiting time, no intrusion occurs, then the initial detection is

ignored and the system returns to its initial condition. The waiting time is calculated based on the prior knowledge of the

minimum speed of the vehicles on the road (vehicles traveling at speeds lower than 11 m/s ( ∼ 40 km/h) are not allowed on

highways). Doing so helps the system to avoid false detections due to noise or targets of no interest, such as bicycles. Other

types of video noise caused by external factors, such as flying birds or shadows, are also filtered out. 

It should be noted that the proposed model is still valid for heavy traffic on multi-lane roads since it relies only on

the movement pattern vector n . Therefore, only an additional tracking component would be required to track every single

vehicle passing through the intrusion lines (even if they are changing lanes) in order to obtain their individual movement

pattern vectors. Then the pdfs of the passing vehicles’ speeds would be generated separately according to the proposed

method. 

3. Experimental results and discussion 

This system focuses on employing multiple intrusion lines although the evaluation of the parameters under these cir-

cumstances can be quite complicated. When there are more than two intrusion lines, the system’s error e would be reduced

since the number of measurements would increase. The error e is considered as the absolute difference between the actual

and expected speeds for each measurement. However, intrusion lines cannot be added indefinitely. The primary restriction

is that the minimum distance between two intrusion lines should be greater than Tv max . Further restrictions include the

geometrical properties of the scene, the size of the vehicles and the camera’s resolution. 

In this experiment, we used approximately two hours of data collected by cameras monitoring a major highway with

normal to heavy traffic. The data contains information on trucks, trailers, cars and buses passing by at various speeds. The

recordings were acquired simultaneously by one handheld camera and one smartphone with frame rates of 1 /T = 50 fps

and 1 /T = 30 fps, respectively, in order to investigate the proposed model. The size of the input frame was 960 × 540 pixels.

The distance between the first and last intrusion lines was 8.97 m, which was in accordance with the cameras’ resolutions

and the detection scene. Four intrusion lines were implemented, and each intrusion line was aligned to a guardrail pole as

a reference point, see Fig. 5 . The distance vector of the intrusion lines was then defined as d = [0 , 2 . 87 , 5 . 95 , 8 . 97] (m). The

proposed system was realized on a common notebook platform 

1 and was able to operate in real time. 

For every passing vehicle, a movement pattern vector was generated that indicated the frame number differences n

between the four intrusion lines. According to the model derived in Section 2 . A, a speed pdf was associated with the

movement pattern vector of each vehicle. The pdf provided a range of possible speeds (lower and upper bounds) and also

the probability of each speed to occur given the movement pattern vector n . In order to evaluate the proposed method more

accurately, we drove through the four intrusion lines with a GPS-equipped car and compared the detected speeds with the

ones obtained via the GPS. Several runs were made at different constant speeds, and the motion data extracted from the

vehicle included the time, location and speed, see Fig. 6 . The speeds extracted from the navigator device were considered to

be ground truth for our measurements since the error range of a GPS used under the same atmospheric conditions is very

low [23] . 

As explained earlier, a higher frame rate provides a higher sampling rate, generating a smaller �. It was also ob-

served during the experiment that the relation between the sampling rate and the measurement error for various speeds
1 Windows notebook platform using Visual C++ and OpenCV libraries. 
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Fig. 5. Speed measurements for a vehicle travelling through four intrusion lines, including the estimation of possible lower and upper bounds. 

Fig. 6. An overview of the measurement site being traversed by the GPS-equipped car. 

 

 

 

 

 

 

 

 

 

 

 

is not strictly proportional (see Tables 1 and 2 ). The error rate for the proposed method at 50 fps is 1.77%, while it is

2.17% at 30 fps. Thus, in general, the accuracy is improved with an increase in the frame rate. However, when comparing

the two measurement setups with different frame rates, the error difference is small and not proportional. This result can

be explained by the low number of measurements, and possible errors in estimating the speed via the GPS device must be

considered. Table 3 presents the average errors obtained via four different methods. It can be seen that the performance

of our proposed method at 50 fps is superior to the results presented in [24] and [25] . Although, Lan et al. [1] has lower

average error rate, it does not perform well at low speeds due to being based on the frame difference algorithm. Further-

more, the error rate in our method can be reduced further by varying the distances between intrusion lines as well as using

cameras with higher frame rates. 

Another important aspect of the results obtained using the proposed method is that the actual speeds are within the

range of the estimated pdf regardless of the sampling rate. This finding suggests that the model is reliable in terms of

detecting a range that contains the true speed. This property is crucial when taking legal action based on the results. Further,

a higher frame rate often provides a narrower range of possible speeds, see Fig. 7 . 
Table 1 

The performance evaluation of the proposed method at a frame rate of 1 
T 

= 

30 fps with d = [0 , 2 . 87 , 5 . 95 , 8 . 97] (m). 

No. Actual Movement Detected speed (m/s) Error 

speed (m/s) pattern vector ( v lower − v upper ) μV rate (%) 

1 20.5 n = [0 , 5 , 9 , 13] (20 . 3 − 21 . 5) 20.8 1.46 

2 26.2 n = [0 , 4 , 7 , 11] (23 . 1 − 26 . 9) 25.2 3.82 

3 20.0 n = [0 , 4 , 9 , 13] (19 . 2 − 22 . 3) 20.6 3.00 

4 25.3 n = [0 , 4 , 7 , 11] (23 . 1 − 26 . 9) 25.2 0.39 

Table 2 

The performance evaluation of the proposed method at a frame rate of 1 
T 

= 

50 fps with d = [0 , 2 . 87 , 5 . 95 , 8 . 97] (m). 

No. Actual Movement Detected speed (m/s) Error 

speed (m/s) pattern vector ( v lower − v upper ) μV rate (%) 

1 20.5 n = [0 , 7 , 14 , 21] (20 . 4 − 22 . 4) 21.4 4.39 

2 26.2 n = [0 , 6 , 12 , 17] (25 . 4 − 27 . 0) 26.2 0.00 

3 20.0 n = [0 , 7 , 15 , 22] (19 . 5 − 21 . 2) 20.3 1.50 

4 25.3 n = [0 , 6 , 12 , 18] (23 . 6 − 26 . 4) 25.0 1.18 
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Fig. 7. The estimated pdfs of the experiments described in Table 1 at 30 fps (right column) and Table 2 at 50 fps (left column). 
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Table 3 

The average errors for different methods. 

Method [24] Method [25] Method [1] Our method 

1 
T 

= 30 fps 1 
T 

= 50 fps 

Average 6.1 1.9 1.12 2.17 1.77 

error (%) 

Table 4 

The speed limits and detected speeds of the passing vehicles. 

Speed range Passenger Passenger Truck Truck 

(km/h) car & van car & van & bus with trailer 

with trailer 

50 ≤ v < 60 2 1 0 1 

60 ≤ v < 70 6 0 1 2 

70 ≤ v < 80 56 7 4 38 

80 ≤ v < 90 200 10 16 41 

90 ≤ v < 100 106 2 0 0 

100 ≤ v < 110 154 0 0 0 

110 ≤ v < 120 24 0 0 0 

120 ≤ v < 130 7 0 0 0 

Average speed 92.9 81.4 81.7 78.9 

 

 

 

 

 

 

 

 

 

Furthermore, we have measured the pdfs and expected values for 678 passing vehicles on three different days and com-

pared them with the posted speed limits for the measurement site. A correlation between the detected speeds and the

speed limit can also validate the proposed model considering that vehicles probably travel within the speed limits. Table 4

shows the distribution of the detected speeds. The speed limits for the measurement site were 27.8 m/s (100 km/h) for pas-

senger cars and vans, 25 m/s (90 km/h) for heavy vehicles (e.g., trucks and buses) and 22.2 m/s (80 km/h) for any vehicles

with trailer(s). The experimental results show a high correlation between the detected speeds and the expected ranges for

different categories of vehicles. 

As shown in Fig. 8 , the greatest number of vehicles fall within the range 22.2–24.7 m/s (80–89 km/h). The heavy vehicles

and vehicles with trailers are supposed to travel within this range and around 22.2 m/s (80 km/h), respectively. In addition,

the passenger cars that were following these slower-moving vehicles without being able to overtake them had to travel at
Fig. 8. The detected speeds of passing vehicles categorized according to class. 
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almost at the same speeds. The second highest number of vehicles were detected travelling in the range of 27.8–30.3 m/s

(100–109 km/h), which is as expected since that was the speed limit for passenger cars. 

More importantly, no heavy vehicle was probably travelling at a speed above 25 m/s (90 km/h) since the majority of

them are controlled automatically according to the speed limit. The experimental results demonstrate that the proposed

model is reliable and can achieve accurate measurements. 

4. Conclusion 

The presented video-based speed measurement model provides the probability density function of a passing vehicle’s

speed based on its movement pattern vector. In this work, the proposed method was implemented using four intrusion

lines, and the input frames were captured simultaneously by an off-the-shelf handheld camera and a smartphone device

with frame rates of 50 fps and 30 fps, respectively. According to the experimental results, the average error rates of the speed

measurement system at 50 fps and 30 fps were 1.77% and 2.17%, respectively, for vehicles travelling in the range of 70 km/h–

100 km/h. The error rate decreased noticeably with an increase in the frame rate, as expected. In addition, the actual speeds

of the vehicles were within the range of the estimated pdfs, increasing the confidence in the model. It was also observed

that the ranges of obtained pdfs often decreased with the increase in the camera frame rate. Furthermore, the proposed

model was employed to measure the speed of more than 670 vehicles, and the results were compared with the speed

limits with respect to the vehicles categories passing through the measurement site. The experimental results demonstrated 

that the detected speeds and the speed limits were highly correlated. Theses correlations validate the proposed model since

the majority of heavy vehicles (e.g., buses, trucks and trailers) are equipped with speed regulators forcing them to follow

the speed limits. It can be concluded that the proposed video-based model performs with high precision and robustness

when measuring the speeds of passing vehicles. Future work should focus on utilizing a depth map in order to initiate the

intrusion lines automatically. 
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