PhET Interactive Simulation Spoken Tutorials-Assignments
Funded by the Pandit Madan Mohan Malaviya National Mission on Teachers and
Teaching and National Mission on Education through ICT

Tutorial Name: Fluid Pressure and Flow

Assignment 1

1. Note the change in the values of pressure for the given values of depth.

Fluid Density	Depth	Pressure
Water $1000 \mathrm{Kg} / \mathrm{m}^{3}$	1 m	111.0 kPa
	2 m	120.8 kPa
	3 m	130.3 kPa
Gasoline $700 \mathrm{Kg} / \mathrm{m}^{3}$	1 m	
	2 m	
	3 m	
Honey $1420 \mathrm{Kg} / \mathrm{m}^{3}$	1 m	
	2 m	
	3 m	

2. Explain your observation.

Assignment 2

Observe the change in speed and pressure when, fluid density is changed to gasoline and honey.

Assignment 3

A Tank of cubical shape is filled with honey to a height of 10.42 m . Find the pressure exerted by the honey at the bottom of the tank. The atmospheric pressure is 102.3 kPa . Density of honey is $1420 \mathrm{~kg} / \mathrm{m}^{3}$. Take $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{sec}^{2}$.

Assignment 4

A Tank of cubical shape is filled with gasoline to a height of 10.42 m . Find the pressure exerted by the gasoline at the bottom of the tank. The atmospheric pressure is 102.3 kPa .
Density of gasoline is $700 \mathrm{~kg} / \mathrm{m}^{3}$. Take $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{sec}^{2}$.

